

ZDSD01G/02G/04G SD NAND Datasheet

* Information furnished is believed to be accurate and reliable. However, Zetta assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Zetta. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Zetta products are not authorized for use as critical components in life support devices or systems without express written approval of Zetta. The Zetta logo is a registered trademark of Zetta Device Technology Limited. All other names are the property of their respective own.

1. Introduction

Zetta SD NAND is an embedded storage solution designed in a LGA8 package form. The operation of SD NAND is similar to an SD card which is an industry standard.

SD NAND consists of NAND flash and a high-performance controller. 3.3V supply voltage is required for the NAND area (VCC). SD NAND is fully compliant with SD2.0 interface, which is utilized by most of general CPU. The advantages of the SD NAND include high quality, low power consumption and cost performance.

2. Product List

Capacity	Part number	Package	Size
1Gb	ZDSD01GLGEAG	LGA8 (Land Grid Array)	8x6mm
2Gb	ZDSD02GLGEAG	LGA8 (Land Grid Array)	8x6mm
4Gb	ZDSD04GLGEAG	LGA8 (Land Grid Array)	8x6mm
8Gb	ZDSD08GLGEAG	LGA8 (Land Grid Array)	8x6mm

3. Features

- ✓ Support up to 50Mhz clock frequency
- ✓ Support 1/4 bit mode
- ✓ Built-in HW ECC Engine and highly reliable NAND management mechanism
- High Speed model, Speed class 4/class 6/class 8/class10 supported.
- ✓ Smaller package LGA8 (Land Grid Array)
- \checkmark Operation Conditions Temperature Range: Ta = -30 $^{\circ}$ C to +85 $^{\circ}$ C
- \checkmark Storage Conditions Temperature Range: Tstg = -40 $^{\circ}$ C to +85 $^{\circ}$ C

4. Block Diagram

5. Pin Assignments

Pin No.	Pin name (SD mode)	Pin name (SPI mode)
1	SD2, I/O pin	NC, no connection
2	SD3, I/O pin	/CS, chip select
3	CLK, clock signal	CLK, clock signal
4	Vss, ground	Vss, groud
5	CMD, command signal	DI, data in
6	SD0, I/O pin	DO, data out
7	SD1, I/O pin NC, no connection	
8	Vdd, power supply	Vdd, power supply

6. Usage

6.1. Product Protocol

As SD NAND is the realize SD2.0 standard product, thus please refer to the SD2.0 related protocol: SD Physical Layer Specification Version 2.00.

6.2. DC Characteristics

Item		Symbol	MIN	MAX	Unit	Note	
Supply voltage		Vdd	2.7	3.6	V		
la autoralita an	High Level	Vih	VDD*0.625	VDD+0.3	V		
Input voltage	Low Level	VIL	Vss-0.3	VDD*0.25	V		
Output voltage	High Level	Vон	Vdd*0.75		V	IOH=-2mA, VDD=VDDmin	
	Low Level	VCL		VDD*0.125	V	IOL=2ma, VDD=VDDmin	
Standby Current(*)		lcc1		20*		VDD=3.6V, clock 25MHz	
				0.2	mA	VDD=3.0V, clock STOP, Ta=25°C	
Operation Current/	write	I		30			
Operation Current(Read	I		30	mA	3.6V/25MHz,50MHz	
Input voltage setup Time		Vrs		250	ms		

Note: Standby current max 20mA with CLOCK 25Mhz only based on 100 pcs samples

Peak Voltage and Leak Current

Item	Symbol	MIN	MAX	Unit	Note
Peak voltage on all lines		-0.3	VDD+0.3	V	
Input Leakage Current for all pins		-10	10	uA	
Output Leakage Current for all outputs		-10	10	uA	

Signal Capacitance

Pull up Resistance	Rcmd/Rdat	10	100	k	
Total bus capacitance for each signal line	CL	-	40	pF	1 card Сноѕт+Св∪ѕ≪30рF
Card Capacitance for signal pin	CCARD	-	10	pF	
Pull up Resistance inside card (pin1)	Rdat3	10	90	k	
Capacity Connected to Power line	Cc	-	5	pF	

Note: WP pull-up (Rwp) Value is depend on the Host Interface drive circuit.

7. Package Dimensions

8. Ordering Information

The ordering part number is formed by a valid combination of the following

G = Green/Reach Package

9. Revision History

Version No.	Change Description	Date
V1.0	Initial release, part number is based on extended temperature, LGA 8*6mm	2020/06/02